List 3

Matrices, systems of linear equations
A matrix is a grid of numbers. The dimensions of a matrix are written in the format " $m \times n$ ", spoken as " m by n ", where m is the number of rows and n is the number of columns (write both numbers; do not multiply them).
43. Give the dimensions of the following matrices:
(a) $\left[\begin{array}{cc}-92 & 8 \\ -78 & -67\end{array}\right]$
(d) $\left[\begin{array}{ccc}-13 & -63 & -5 \\ 0 & -66 & \frac{1}{2} \\ 31 & \frac{5}{22} & \frac{8}{11}\end{array}\right]$
(b) $\left[\begin{array}{c}-36 \\ 72 \\ -12\end{array}\right]$
(e) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{ccc}75 & 89 & 50 \\ -5 & -81 & 34\end{array}\right]$
(f) $\left[\begin{array}{cccccc}58 & -65 & 40 & 8 & -1 & 26 \\ -74 & 58 & -92 & -4 & -21 & 74\end{array}\right]$

In order to for the matrix product $M N$ to exist (that is, for it to be possible to do the multiplication $M N$) it must be that the number of columns of M is equal to the number of rows of N.
44. If A is a 2×2 matrix, B is a 3×3 matrix, and C is a 3×2 matrix, which of the following exist?
(a) $A A$
(e) $B B$
(i) $C C$
(m) $A^{\top} C$
(b) $A B$
(f) $B C$
(j) $A B C$
(n) $A C^{\top}$
(c) $A C$
(g) $C A$
(k) $B C A$
(o) $C^{\top} C$
(d) $B A$
(h) $C B$
(ℓ) $A C A$
(p) $A B^{\top} C A C^{\top}$
45. (a) Calculate $\left[\begin{array}{cc}1 & 2 \\ 5 & -8\end{array}\right]\left[\begin{array}{cc}3 & 0 \\ 2 & 12\end{array}\right]$. (b) Calculate $\left[\begin{array}{cc}3 & 0 \\ 2 & 12\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 5 & -8\end{array}\right]$.
(b) Compare your answers to parts (a) and (b).

The transpose of a matrix M, written M^{\top}, swaps the rows and columns. For example, $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]^{\top}=\left[\begin{array}{ccc}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$.
46. Compute the following:
(a) $\left[\begin{array}{ccc}1 & 14 & 8 \\ 6 & -1 & 14 \\ 5 & 11 & -3\end{array}\right]+\left[\begin{array}{ccc}11 & 2 & 10 \\ -2 & 14 & 8 \\ -2 & 3 & -4\end{array}\right]$
(d) $\frac{1}{6}\left[\begin{array}{ll}9 & 14 \\ 6 & 10\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 14 & 8 \\ 6 & -1 & 14 \\ 5 & 11 & -3\end{array}\right]-\left[\begin{array}{ccc}11 & 2 & 10 \\ -2 & 14 & 8 \\ -2 & 3 & -4\end{array}\right]$
(e) $\left[\begin{array}{cc}8 & 5 \\ 0 & -5\end{array}\right]\left[\begin{array}{l}1 \\ 5\end{array}\right]$
(c) $3\left[\begin{array}{ccc}0 & -4 & 0 \\ -1 & -1 & 3 \\ -2 & 5 & 14\end{array}\right]$
(f) $\left[\begin{array}{cc}9 & 8 \\ -2 & 5\end{array}\right]^{\top}\left[\begin{array}{l}2 \\ 6\end{array}\right]$
(g) $\left[\begin{array}{ccc}-5 & 5 & 7 \\ -2 & -3 & 2 \\ -2 & 1 & 4\end{array}\right]\left[\begin{array}{l}3 \\ 9 \\ 8\end{array}\right]$
(i) $\left[\begin{array}{ccc}4 & 8 & 0 \\ -3 & 3 & -3 \\ 8 & 5 & -2\end{array}\right]^{\top}\left[\begin{array}{c}-2 \\ 4 \\ 7\end{array}\right]$
(h) $\left[\begin{array}{ccc}4 & 8 & 0 \\ -3 & 3 & -3 \\ 8 & 5 & -2\end{array}\right]\left[\begin{array}{c}-2 \\ 4 \\ 7\end{array}\right]$
47. Compute $\left[\begin{array}{ccc}1 & -\sqrt{2} & 1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & \sqrt{2} & 1\end{array}\right]\left[\begin{array}{c}4 \\ 1 \\ -2\end{array}\right]$.
48. Compute the following, if they exist:
(a) $\left[\begin{array}{cc}9 & -4 \\ -5 & -5\end{array}\right]\left[\begin{array}{cc}8 & 1 \\ 0 & -3\end{array}\right]$
(d) $\left[\begin{array}{ll}3 & 0 \\ 2 & 2\end{array}\right]\left[\begin{array}{ccccc}0 & 2 & -1 & 2 & 7 \\ 3 & -4 & -1 & 1 & 8\end{array}\right]$
(b) $\left[\begin{array}{ccc}4 & 5 & 22 \\ 8 & -13 & 4\end{array}\right]\left[\begin{array}{cccc}19 & 0 & 35 & 6 \\ 0 & 2 & 2 & 6 \\ 9 & 1 & 19 & -1\end{array}\right]$
(e) $\left[\begin{array}{cc}-2 & -4 \\ 7 & 5\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ -4 & 2\end{array}\right]\left[\begin{array}{ll}7 & 8 \\ 2 & 8\end{array}\right]$
(c) $\left[\begin{array}{cccc}19 & 0 & 35 & 6 \\ 0 & 2 & 2 & 6 \\ 9 & 1 & 19 & -1\end{array}\right]\left[\begin{array}{ccc}4 & 5 & 22 \\ 8 & -13 & 4\end{array}\right]$
(f) $\left[\begin{array}{ccc}-4 & -3 & -5 \\ 24 & 6 & 29\end{array}\right]\left[\begin{array}{ccc}4 & 13 & 0 \\ 2 & -26 & 9\end{array}\right]$
(g) $\left[\begin{array}{ccc}-4 & -3 & -5 \\ 24 & 6 & 29\end{array}\right]\left[\begin{array}{ccc}4 & 13 & 0 \\ 2 & -26 & 9\end{array}\right]^{\top}$
49. (a) Calculate $\left(\left[\begin{array}{cc}1 & 2 \\ 5 & -8\end{array}\right]\left[\begin{array}{cc}3 & 0 \\ 2 & 12\end{array}\right]\right)^{\top}$.
(b) Calculate $\left[\begin{array}{cc}1 & 2 \\ 5 & -8\end{array}\right]^{\top}\left[\begin{array}{cc}3 & 0 \\ 2 & 12\end{array}\right]^{\top}$.
(c) Calculate $\left[\begin{array}{cc}3 & 0 \\ 2 & 12\end{array}\right]^{\top}\left[\begin{array}{cc}1 & 2 \\ 5 & -8\end{array}\right]^{\top}$.
(d) Compare your answers to parts (a) and (b).
(e) Compare your answers to parts (a) and (c).
50. Compute the following:
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}8 & 2 \\ 3 & -3\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}14 & 21 \\ -11 & 23\end{array}\right]$
(f) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}59 & 28 & 58 \\ 61 & 44 & 67 \\ 22 & 39 & 17\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}99 & \frac{1}{10} \\ -37 & 2\end{array}\right]$
(g) $\left[\begin{array}{lll}59 & 28 & 58 \\ 61 & 44 & 67 \\ 22 & 39 & 17\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}-4 & -2 & 1 \\ 5 & 2 & 5 \\ 7 & 4 & 1\end{array}\right]$
(h) $\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccccc}-39 & -66 & 84 & 66 & -10 \\ -47 & -5 & 17 & -59 & -3 \\ -94 & -90 & -5 & 86 & 31 \\ 25 & 80 & 0 & 35 & 19 \\ -72 & 40 & 99 & 48 & 57\end{array}\right]$
(e) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}15 & 11 & -15 \\ 17 & 10 & -8 \\ 0 & 0 & -13\end{array}\right]$
51. For each of the points P_{1} through P_{7}, calculate

$$
P_{i}^{\prime}=\left[\begin{array}{cc}
1 & 1 / 2 \\
0 & 1
\end{array}\right] P_{i} .
$$

(For example, for $P_{5}^{\prime}=\left[\begin{array}{cc}1 & 1 / 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 4\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right]$.) Plot the points $P_{1}^{\prime}, \ldots, P_{7}^{\prime}$ on a new grid. Connect $P_{1}{ }^{\prime} \rightarrow P_{2}{ }^{\prime} \rightarrow P_{3}{ }^{\prime} \rightarrow P_{4}{ }^{\prime}$ with line segments, and connect $P_{5}^{\prime} \rightarrow P_{6}^{\prime} \rightarrow P_{7}^{\prime}$.

Congratulations. You can write in italics!

52. If $\left[\begin{array}{ll}3 & 5 \\ 5 & 9\end{array}\right] M=\left[\begin{array}{ccc}8 & 25 & 12 \\ 14 & 45 & 22\end{array}\right]$, what are the dimensions of matrix M ?
53. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right], C=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], D=\left[\begin{array}{lll}0 & 5 & 2\end{array}\right]$, and $E=\left[\begin{array}{ll}1 & 0 \\ 0 & 2 \\ 3 & 1\end{array}\right]$. Write all the products of two matrices from this list that exist (e.g., $\bar{A} A$ exists, but $A C$ does not).
54. For each of the following equations, either give the dimensions of the matrix M or state that such a matrix does not exist. (You do not have to solve for M.)
(a) $M=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$
(d) $M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]+\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$
(b) $M=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{array}\right]$
(e) $M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]+\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
(c) $M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$
(f) $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right] M\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
(g) $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] M\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
(h) $\left[\begin{array}{cc}2 & -8 \\ 1 & 5 \\ 0 & -7\end{array}\right]\left[\begin{array}{ccccc}9 & 0 & 0 & 11 & 4 \\ -2 & -8 & 6 & 1 & \frac{1}{2}\end{array}\right]\left[\begin{array}{c}5 \\ -4 \\ 0 \\ 1 \\ -9\end{array}\right]\left[\begin{array}{lll}\frac{2}{7} & 1 & \frac{4}{7}\end{array}\right]=M$

Earlier versions of Tasks 55 and 56 involved "determinants", which are not part of MAT 1448.
55. Suppose M is a 5×12 matrix. Can there be a matrix N such that both $M N$ and $N M$ exist? If so, can anything be said about the dimensions of N ?
56. Calculate $\left[\begin{array}{cc}11 & \frac{9}{2} \\ -2 & 21\end{array}\right]^{2}$ and $\left[\begin{array}{cc}-16 & 18 \\ -8 & 24\end{array}\right]^{2}$ and compare the answers.

The $\boldsymbol{n} \times \boldsymbol{n}$ identity matrix is the matrix I (also written I_{n} or $I_{n \times n}$) such that

$$
I M=M I=M
$$

for any $n \times n$ matrix M. It has 1 along the main diagonal and 0 everywhere else.
57. (a) Multiply $\left[\begin{array}{ccc}0 & -4 & 2 \\ 10 & -1 & 0 \\ 1 & 12 & -6\end{array}\right]\left[\begin{array}{ccc}3 & 0 & 1 \\ 30 & -1 & 10 \\ \frac{121}{2} & -2 & 20\end{array}\right]$.
(b) Multiply $\left[\begin{array}{ccc}0 & -4 & 2 \\ 10 & -1 & 0 \\ 1 & 12 & -6\end{array}\right]\left[\begin{array}{ccc}3 & 0 & 1 \\ 30 & -1 & 10 \\ \frac{121}{2} & -2 & 20\end{array}\right]\left[\begin{array}{ccc}6 & 4 & 9 \\ 0 & -3 & -2 \\ 4 & 6 & -4\end{array}\right]$.

The inverse matrix of a matrix M is written M^{-1} (spoken as " M inverse") and it is the unique matrix for which $M^{-1} M=I$ and $M M^{-1}=I$. For a 2×2 matrix,

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] .
$$

For any square matrix, the inverse can be found by carefully applying "row operations" to the "augmented matrix" $[M \mid I]$ until it becomes $\left[I \mid M^{-1}\right]$.
58. Find $\left[\begin{array}{cc}5 & 4 \\ 1 & -2\end{array}\right]^{-1}$ and $\left[\begin{array}{ccc}0 & -4 & 2 \\ 10 & -1 & 0 \\ 1 & 12 & -6\end{array}\right]^{-1}$.
59. Find the inverses of the following matrices. Compare the answers of parts (e) and (f).
(a) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{-1}$
(d) $\left[\begin{array}{cc}3 & -1 \\ 2 & 5\end{array}\right]^{-1}$
(g) $\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 9 \\ 5 & 6 & 8\end{array}\right]^{-1}$
(b) $\left[\begin{array}{ll}3 & 5 \\ 5 & 9\end{array}\right]^{-1}$
(e) $\left[\begin{array}{ll}3 & b \\ 2 & 5\end{array}\right]^{-1}$
(c) $\left[\begin{array}{ll}8 & 4 \\ 6 & 3\end{array}\right]^{-1}$
(f) $\left[\begin{array}{ll}3 & 2 \\ b & 5\end{array}\right]^{-1}$
$\underset{\boldsymbol{s}}{ }(\mathrm{h})\left[\begin{array}{llll}3 & 1 & 3 & 3 \\ 1 & 2 & 4 & 0 \\ 2 & 0 & 2 & 2 \\ 4 & 2 & 1 & 3\end{array}\right]^{-1}$
60. Find the matrix M from Task 52.
61. Solve the following matrix equations:
(a) $X\left[\begin{array}{cc}-1 & 1 \\ 3 & -4\end{array}\right]=\left[\begin{array}{cc}-2 & -1 \\ 3 & 4\end{array}\right]$.
(c) $\left(\left[\begin{array}{cc}0 & 3 \\ 5 & -2\end{array}\right]+4 X\right)^{-1}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
(b) $\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right] X\left[\begin{array}{ll}1 & 3 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}3 & 3 \\ 2 & 2\end{array}\right]$.
(d) $3\left[\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right]=X^{\top}\left[\begin{array}{ll}5 & 7 \\ 6 & 8\end{array}\right]$.

Earlier versions of Tasks 62 and parts of Task 63 also involved determinants.
62. Find a matrix X for which $\left[\begin{array}{ll}2 & 0 \\ 2 & 0\end{array}\right] X=\left[\begin{array}{ll}10 & 4 \\ 10 & 4\end{array}\right]$.
63. For each of the following, does an inverse matrix exist?
(a) the 3×3 identity matrix.
(b) a 3×5 matrix where every number in the matrix is 1 .
(c) a 4×4 matrix where every number in the matrix is 1 .
(d) a 4×4 matrix where every number in the matrix is 0 .
(e) a 2×2 matrix with $a_{i j}=i+j$.
64. Use inverse matrices to solve these systems:
(a) $2 x-y=3,3 x+y=2$
(b) $x+2 y=0,2 x-y=5$
(c) $\left\{\begin{array}{r}x+y+z=5 \\ 2 x+2 y+z=3 \\ 3 x+2 y+z=1\end{array}\right.$
(d) $\left\{\begin{aligned} x+y+z & =4 \\ 2 x-3 y+5 z & =-5 \\ -x+2 y-z & =2\end{aligned}\right.$
65. Use the Gauss method to solve the systems of linear equations from Task 64.
66. Solve the following systems of equations:
(a) $\left\{\begin{aligned} x+2 y+3 z & =14 \\ 4 x+3 y-z & =7 \\ x-y+z & =2\end{aligned}\right.$
(b) $\left\{\begin{array}{l}3 x+4 y+z+2 t=3 \\ 6 x+8 y+2 z+5 t=7 \\ 9 x+12 y+3 z+10 t=13\end{array}\right.$
(c) $\left\{\begin{array}{l}3 x-5 y+2 z+4 t=2 \\ 7 x-4 y+z+3 t=5 \\ 5 x+7 y-4 z-6 t=3\end{array}\right.$
(e) $\left\{\begin{array}{l}3 x+2 y+2 z+2 t=2 \\ 2 x+3 y+2 z+5 t=3 \\ 9 x+y+4 z-5 t=1 \\ 2 x+2 y+3 z+4 t=5 \\ 7 x+y+6 z-t=7\end{array}\right.$

