Math for Management, Winter 2023 List 3 Matrices, systems of linear equations

A matrix is a grid of numbers. The **dimensions** of a matrix are written in the format " $m \times n$ ", spoken as "m by n", where m is the number of rows and n is the number of columns (write both numbers; do <u>not</u> multiply them).

43. Give the dimensions of the following matrices:

(a)
$$\begin{bmatrix} -92 & 8 \\ -78 & -67 \end{bmatrix}$$

(b) $\begin{bmatrix} -36 \\ 72 \\ -12 \end{bmatrix}$
(c) $\begin{bmatrix} 75 & 89 & 50 \\ -5 & -81 & 34 \end{bmatrix}$
(d) $\begin{bmatrix} -13 & -63 & -5 \\ 0 & -66 & \frac{1}{2} \\ 31 & \frac{5}{22} & \frac{8}{11} \end{bmatrix}$
(e) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
(f) $\begin{bmatrix} 58 & -65 & 40 & 8 & -1 & 26 \\ -74 & 58 & -92 & -4 & -21 & 74 \end{bmatrix}$

In order to for the matrix product MN to exist (that is, for it to be possible to do the multiplication MN) it must be that the number of columns of M is equal to the number of rows of N.

44. If A is a 2×2 matrix, B is a 3×3 matrix, and C is a 3×2 matrix, which of the following exist?

	(a)	AA	(e) BB	(i) <i>CC</i>	(m) $A^{\top}C$
	(b)	AB	(f) BC	(j) ABC	(n) AC^{\top}
	(c)	AC	(g) CA	(k) BCA	(o) $C^{\top}C$
	(d)	BA	(h) CB	$(\ell) ACA$	(p) $AB^{\top}CAC^{\top}$
45.	(a)	Calculate $\begin{bmatrix} 1\\5 \end{bmatrix}$	$ \begin{array}{c} 2\\ -8 \end{array} \begin{bmatrix} 3 & 0\\ 2 & 12 \end{bmatrix} . $	(b) Calculate $\begin{bmatrix} 3\\ 2 \end{bmatrix}$	$\begin{bmatrix} 0\\12 \end{bmatrix} \begin{bmatrix} 1 & 2\\5 & -8 \end{bmatrix}.$
	(b)	Compare your	answers to parts (a) and (b).	

The **transpose** of a matrix M, written M^{\top} , swaps the rows and columns. For example, $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^{\top} = \begin{bmatrix} 1 & 4 \\ 2 & 3 \\ 3 & 6 \end{bmatrix}^{\bullet}$.

46. Compute the following:

(a)
$$\begin{bmatrix} 1 & 14 & 8 \\ 6 & -1 & 14 \\ 5 & 11 & -3 \end{bmatrix} + \begin{bmatrix} 11 & 2 & 10 \\ -2 & 14 & 8 \\ -2 & 3 & -4 \end{bmatrix}$$
 (d) $\frac{1}{6} \begin{bmatrix} 9 & 14 \\ 6 & 10 \end{bmatrix}$
(b) $\begin{bmatrix} 1 & 14 & 8 \\ 6 & -1 & 14 \\ 5 & 11 & -3 \end{bmatrix} - \begin{bmatrix} 11 & 2 & 10 \\ -2 & 14 & 8 \\ -2 & 3 & -4 \end{bmatrix}$ (e) $\begin{bmatrix} 8 & 5 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix}$
(c) $3 \begin{bmatrix} 0 & -4 & 0 \\ -1 & -1 & 3 \\ -2 & 5 & 14 \end{bmatrix}$ (f) $\begin{bmatrix} 9 & 8 \\ -2 & 5 \end{bmatrix}^{\top} \begin{bmatrix} 2 \\ 6 \end{bmatrix}$

$$\begin{array}{l} \text{(g)} \begin{bmatrix} -5 & 5 & 7 \\ -2 & -3 & 2 \\ -2 & 1 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 9 \\ 8 \end{bmatrix} & \text{(i)} \begin{bmatrix} 4 & 8 & 0 \\ -3 & 3 & -3 \\ 8 & 5 & -2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} -2 \\ 4 \\ 7 \end{bmatrix} \\ \text{(h)} \begin{bmatrix} 4 & 8 & 0 \\ -3 & 3 & -3 \\ 8 & 5 & -2 \end{bmatrix} \begin{bmatrix} -2 \\ 4 \\ 7 \end{bmatrix} \\ \text{47. Compute} \begin{bmatrix} 1 & -\sqrt{2} & 1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ -2 \end{bmatrix} . \\ \text{48. Compute the following, if they exist:} \\ \text{(a)} \begin{bmatrix} 9 & -4 \\ -5 & -5 \end{bmatrix} \begin{bmatrix} 8 & 1 \\ 0 & -3 \end{bmatrix} & \text{(d)} \begin{bmatrix} 3 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 0 & 2 & -1 & 2 & 7 \\ 3 & -4 & -1 & 1 & 8 \end{bmatrix} \\ \text{(b)} \begin{bmatrix} 4 & 5 & 22 \\ 8 & -13 & 4 \end{bmatrix} \begin{bmatrix} 19 & 0 & 35 & 6 \\ 0 & 2 & 2 & 6 \\ 9 & 1 & 19 & -1 \end{bmatrix} & \text{(e)} \begin{bmatrix} -2 & -4 \\ 7 & 5 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 7 & 8 \\ 2 & 8 \end{bmatrix} \\ \text{(f)} \begin{bmatrix} -4 & -3 & -5 \\ 24 & 6 & 29 \end{bmatrix} \begin{bmatrix} 4 & 13 & 0 \\ 2 & -26 & 9 \end{bmatrix}^{\mathsf{T}} \\ \text{(g)} \begin{bmatrix} -4 & -3 & -5 \\ 24 & 6 & 29 \end{bmatrix} \begin{bmatrix} 4 & 13 & 0 \\ 2 & -26 & 9 \end{bmatrix}^{\mathsf{T}} \\ \text{49. (a) Calculate} \left(\begin{bmatrix} 1 & 2 \\ 5 & -8 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 2 & 12 \end{bmatrix} \right)^{\mathsf{T}} . \\ \text{(b) Calculate} \begin{bmatrix} 1 & 2 \\ 5 & -8 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 3 & 0 \\ 2 & 12 \end{bmatrix}^{\mathsf{T}} \\ \frac{1}{5} & -8 \end{bmatrix}^{\mathsf{T}} \\ \text{(d) Compare your answers to parts (a) and (b). \\ \text{(e) Compare your answers to parts (a) and (c). \\ \text{50. Compute the following:} \\ \text{(a)} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ \begin{bmatrix} 8 & 2 \\ 0 & 1 \end{bmatrix} \\ \text{(b)} \begin{bmatrix} 8 & 2 \\ 3 & -3 \end{bmatrix} \\ \text{(c)} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 12 \end{bmatrix} \begin{bmatrix} 5 & 9 & 28 & 58 \\ 61 & 44 & 67 \\ 2 & 3 & -3 \end{bmatrix} \\ \text{(c)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \\ \text{(c)} \begin{bmatrix} 59 & 28 & 58 \\ 61 & 44 & 67 \\ 2 & 3 & -3 \end{bmatrix} \\ \text{(c)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1$$

$$\begin{array}{l} \text{(a)} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 8 & 2 \\ 3 & -3 \end{bmatrix} \\ \text{(b)} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 14 & 21 \\ -11 & 23 \end{bmatrix} \\ \text{(c)} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 99 & \frac{1}{10} \\ -37 & 2 \end{bmatrix} \\ \text{(d)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -4 & -2 & 1 \\ 5 & 2 & 5 \\ 7 & 4 & 1 \end{bmatrix} \\ \text{(e)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -4 & -2 & 1 \\ 5 & 2 & 5 \\ 7 & 4 & 1 \end{bmatrix} \\ \text{(h)} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -39 & -66 & 84 & 66 & -10 \\ -47 & -5 & 17 & -59 & -3 \\ -94 & -90 & -5 & 86 & 31 \\ 25 & 80 & 0 & 35 & 19 \\ -72 & 40 & 99 & 48 & 57 \end{bmatrix}$$

51. For each of the points P_1 through P_7 , calculate

$$P_i' = \begin{bmatrix} 1 & 1/2 \\ 0 & 1 \end{bmatrix} P_i.$$

(For example, for $P_5' = \begin{bmatrix} 1 & 1/2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$.) Plot the points P_1', \dots, P_7' on a new grid. Connect $P_1' \to P_2' \to P_3' \to P_4'$ with line segments, and connect $P_5' \to P_6' \to P_7'$.

Congratulations. You can write in italics!

- 52. If $\begin{bmatrix} 3 & 5\\ 5 & 9 \end{bmatrix} M = \begin{bmatrix} 8 & 25 & 12\\ 14 & 45 & 22 \end{bmatrix}$, what are the dimensions of matrix M?
- 53. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $D = \begin{bmatrix} 0 & 5 & 2 \end{bmatrix}$, and $E = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 1 \end{bmatrix}$. Write all the products of two matrices from this list that exist (e.g., AA exists, but AC does not).
- 54. For each of the following equations, either give the dimensions of the matrix M or state that such a matrix does not exist. (You do *not* have to solve for M.)

$$(a) \ M = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

$$(b) \ M = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 6 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

$$(c) \ M = \begin{bmatrix} 1 & 2 \\ 3 \\ 4 \end{bmatrix}$$

$$(c)$$

Earlier versions of Tasks 55 and 56 involved "determinants", which are not part of MAT 1448.

55. Suppose M is a 5×12 matrix. Can there be a matrix N such that both MN and NM exist? If so, can anything be said about the dimensions of N?

56. Calculate $\begin{bmatrix} 11 & \frac{9}{2} \\ -2 & 21 \end{bmatrix}^2$ and $\begin{bmatrix} -16 & 18 \\ -8 & 24 \end{bmatrix}^2$ and compare the answers.

The $n \times n$ identity matrix is the matrix I (also written I_n or $I_{n \times n}$) such that IM = MI = M

for any $n \times n$ matrix M. It has 1 along the main diagonal and 0 everywhere else.

57. (a) Multiply
$$\begin{bmatrix} 0 & -4 & 2 \\ 10 & -1 & 0 \\ 1 & 12 & -6 \end{bmatrix} \begin{bmatrix} 3 & 0 & 1 \\ 30 & -1 & 10 \\ \frac{121}{2} & -2 & 20 \end{bmatrix}.$$

(b) Multiply
$$\begin{bmatrix} 0 & -4 & 2 \\ 10 & -1 & 0 \\ 1 & 12 & -6 \end{bmatrix} \begin{bmatrix} 3 & 0 & 1 \\ 30 & -1 & 10 \\ \frac{121}{2} & -2 & 20 \end{bmatrix} \begin{bmatrix} 6 & 4 & 9 \\ 0 & -3 & -2 \\ 4 & 6 & -4 \end{bmatrix}$$

The **inverse matrix** of a matrix M is written M^{-1} (spoken as "M inverse") and it is the unique matrix for which $M^{-1}M = I$ and $MM^{-1} = I$. For a 2×2 matrix,

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} \frac{d}{ad - bc} & \frac{-b}{ad - bc} \\ \frac{-c}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix}$$

For any square matrix, the inverse can be found by carefully applying "row operations" to the "augmented matrix" [M | I] until it becomes $[I | M^{-1}]$.

58. Find
$$\begin{bmatrix} 5 & 4 \\ 1 & -2 \end{bmatrix}^{-1}$$
 and $\begin{bmatrix} 0 & -4 & 2 \\ 10 & -1 & 0 \\ 1 & 12 & -6 \end{bmatrix}^{-1}$.

59. Find the inverses of the following matrices. Compare the answers of parts (e) and (f).

(a)
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{-1}$$

(b) $\begin{bmatrix} 3 & 5 \\ 5 & 9 \end{bmatrix}^{-1}$
(c) $\begin{bmatrix} 8 & 4 \\ 6 & 3 \end{bmatrix}^{-1}$
(d) $\begin{bmatrix} 3 & -1 \\ 2 & 5 \end{bmatrix}^{-1}$
(e) $\begin{bmatrix} 3 & b \\ 2 & 5 \end{bmatrix}^{-1}$
(f) $\begin{bmatrix} 3 & 2 \\ b & 5 \end{bmatrix}^{-1}$
(g) $\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 9 \\ 5 & 6 & 8 \end{bmatrix}^{-1}$
(h) $\begin{bmatrix} 3 & 1 & 3 & 3 \\ 1 & 2 & 4 & 0 \\ 2 & 0 & 2 & 2 \\ 4 & 2 & 1 & 3 \end{bmatrix}^{-1}$

- 60. Find the matrix M from Task 52.
- 61. Solve the following matrix equations:

(a)
$$X\begin{bmatrix} -1 & 1\\ 3 & -4 \end{bmatrix} = \begin{bmatrix} -2 & -1\\ 3 & 4 \end{bmatrix}$$
.
(b) $\begin{bmatrix} 3 & 1\\ 2 & 1 \end{bmatrix} X\begin{bmatrix} 1 & 3\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 3\\ 2 & 2 \end{bmatrix}$.
(c) $\begin{pmatrix} \begin{bmatrix} 0 & 3\\ 5 & -2 \end{bmatrix} + 4X \end{pmatrix}^{-1} = \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}$.
(d) $3\begin{bmatrix} 1 & -2\\ -2 & 1 \end{bmatrix} = X^{\top} \begin{bmatrix} 5 & 7\\ 6 & 8 \end{bmatrix}$.

Earlier versions of Tasks 62 and parts of Task 63 also involved determinants.

62. Find a matrix X for which $\begin{bmatrix} 2 & 0 \\ 2 & 0 \end{bmatrix} X = \begin{bmatrix} 10 & 4 \\ 10 & 4 \end{bmatrix}$.

63. For each of the following, does an inverse matrix exist?

(a) the 3×3 identity matrix.

- (b) a 3×5 matrix where every number in the matrix is 1.
- (c) a 4×4 matrix where every number in the matrix is 1.
- (d) a 4×4 matrix where every number in the matrix is 0.
- (e) a 2×2 matrix with $a_{ij} = i + j$.

64. Use inverse matrices to solve these systems:

(a)
$$2x - y = 3$$
, $3x + y = 2$
(b) $x + 2y = 0$, $2x - y = 5$
(c)
$$\begin{cases} x + y + z = 5\\ 2x + 2y + z = 3\\ 3x + 2y + z = 1 \end{cases}$$
(d)
$$\begin{cases} x + y + z = 4\\ 2x - 3y + 5z = -5\\ -x + 2y - z = 2 \end{cases}$$

65. Use the Gauss method to solve the systems of linear equations from Task 64.

66. Solve the following systems of equations:

(a)
$$\begin{cases} x + 2y + 3z = 14 \\ 4x + 3y - z = 7 \\ x - y + z = 2 \end{cases}$$

(b)
$$\begin{cases} 3x + 4y + z + 2t = 3 \\ 6x + 8y + 2z + 5t = 7 \\ 9x + 12y + 3z + 10t = 13 \end{cases}$$

(c)
$$\begin{cases} 3x - 5y + 2z + 4t = 2 \\ 7x - 4y + z + 3t = 5 \\ 5x + 7y - 4z - 6t = 3 \end{cases}$$

(e)
$$\begin{cases} 3x + 2y + 2z + 2t = 2 \\ 2x + 3y + 2z + 5t = 3 \\ 9x + y + 4z - 5t = 1 \\ 2x + 2y + 3z + 4t = 5 \\ 7x + y + 6z - t = 7 \end{cases}$$